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Abstract. High content computational analysis of time-lapse micro-
scopic cell images requires accurate and efficient segmentation and track-
ing. In this work, we introduce “3LS”, an algorithm using only three level
sets to segment and track arbitrary number of cells in time-lapse micro-
scopic images. The cell number and positions are determined in the first
frame by extracting concave points and fitting ellipses after initial seg-
mentation. We construct a graph representing cells and the background
with vertices and their adjacency relationships with edges. Each vertex
of the graph is assigned with a color tag by applying a vertex coloring
algorithm. In this way, the boundary of each cell can be embedded in
one of three level set functions. The “3LS” algorithm is implemented in
an existing coupled active contour framework (nLS) [1] to handle over-
lapped cells during segmentation. However, we improve nLS using a new
volume conservation constraint (VCC) to prevent shrinkage or expansion
on whole cell boundaries and produce more accurate segmentation and
tracking of touching cells. When tested on four different time-lapse im-
age sequences, the 3LS outperforms the original nLS and other relevant
state-of-the-art counterparts in both segmentation and tracking however
with a notable reduction in computational time.

1 Introduction

High throughput microscopy provides an unprecedented opportunity to visualize
cellular events at high resolutions over time. Time-resolved microscopic imaging
has become popular in studying basic cellular processes such as motility, mi-
gration, deformation, population dynamics, etc. However, increasing quantity of
images of high throughput readouts coupled with complexity of the underlying
information makes manual analysis of such images prohibitive.

Commercial microscopy software packages generally feature tools for object
segmentation and tracking [2]. However, simple intensity based thresholding fails
for cells observed in nonfluorescent imaging modes and for cells in contact. Like-
wise, standard correlation matching cannot keep track of cells that change their
shapes. Such limitations are often partly compensated by graphical user inter-
faces that allow users to manually correct processing errors, but at the expense
of speed and reproducibility – the main benefits of automation.
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Existing cell tracking methods can be divided into two main classes. Algo-
rithms in the first class perform cell detection and linking between cells from
different frames separately. The linking process is usually based on certain crite-
ria of the similarities in spatial positions and appearance of the cells. A typical
method is “favorite matching” through a distance matrix computed from the
Euclidean distance of the cell centroids and the sizes [3–5]. In [6], a dissimilarity
measure was designed based on the spatial distribution, nuclei morphological
appearance, migration, and intensity information. In [7], the similarities were
calculated from object center coordinates, size, and total intensity. For track-
ing of mitotic cell nuclei, object correspondences were determined by searching
for trajectories with maximum smoothness [8]. A framework combining mean
shift and Kalman filters was designed for cell tracking [9]. The main difficulty of
this type of methods is to split or merge the tracks in the event when the total
number of objects is changed.

Algorithms in the second class integrate cell segmentation and tracking in
a model evolution approach [2]. Mostly based on active contours or deformable
models, they extend from segmentation to tracking by using the extracted con-
tours of objects in the previous frame as initialization for the segmentation of the
current frame. In [10], a parametric active contour based method was presented
for the tracking of cell migrations in microscopy videos. Due to the inability of
parametric contours to handle cell interactions, topological operators had to be
introduced to handle cell divisions. In addition, the concept of repulsive con-
tours were proposed to handle cell contact. It is notable that the initialization
of the parametric active contours must be done manually on the first frame of
the temporal sequence. Geometric active contour approaches based on level sets
neither require any explicit parameterization nor suffer from any constraints on
the topology. Such approaches have been used for segmenting and tracking cells
in 2D images [11–14] and dynamic 3D images [1, 15]. The main disadvantage of
the model evolution approaches is the computational cost: to prevent cell fusion,
each cell i has to be represented by its own level set function φi; a pair-wise
coupling constraint is introduced to prevent neighbouring contours from over-
lapping each other (the details can be found in Section 2.1). Hence, if an image
contains N cells, N level set functions φi, i = 1, 2, ..., N will be needed and the
number of such coupling constraint terms will be N2.

To reduce the number of level set functions representing multiple objects,
vertex coloring has been proposed in a four-color level set algorithm [16] where
a graph is constructed with vertices used for representing cells and edges used
for their adjacency relationships. It is noted that, in all existing relevant ap-
proaches, the image background is not represented explicitly. In the present
work, we choose to represent each background explicitly with a fixed vertex in
the graph. With these concepts in mind, we introduce our 3LS algorithm which
uses only three level set functions to tackle the problem of segmenting and track-
ing multiple cells simultaneously.

Besides cell overlapping in microscopic images, cells of similar intensity lev-
els may touch and this causes errors in level set based cell tracking. To handle
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this, Dufour introduced a volume conservation constraint (VCC) term in his
algorithms presented in [1]. However, the VCC term results in shrinkage or ex-
pansion on whole cell boundary. To avoid this undesirable effect, we introduce
an improved VCC and combine it with a pair-wise coupling term. With these
modifications, we propose a three-color coupled level set algorithm for the seg-
mentation and tracking of arbitrary number of cells in time-lapse microscopic
images with overlapping and touching cells. Notably, the proposed algorithm can
reduce computational costs significantly while achieving better segmentation and
tracking accuracy. This is validated by our numerical experiments.

2 Related work

2.1 N-coupled level sets

The tracking algorithms using coupled implicit active contours [11]/surfaces [1]
are an extension to Chan and Vese’s two-phase model in the level-set framework
[17]. In order to track each cell separately, one level set function φi is assigned
to each cell, i = 1, 2, .., n. In the 2D model, the total energy function for the n
level sets (nLS) is given by

E(φ1, ..., φn, cO, cI,1, ..., cI,n) =

∫∫
Ω

n∑
i=1

[
αδ(φi)|∇φi|+ λIH(φi)(I − cI,i)2

+
λO
n

∏
j

(1−H(φj)) (I − cO)2 + γ
∑
i<j

H(φi)H(φj)

]
dxdy

+
1

2

n∑
i=1

ηi

(∫∫
Ω

H(φi)dxdy − V 0
i

)2

(1)

In this expression, cI,i and cO are the mean intensity of voxels inside the ith level
set φi and outside all the current level sets respectively. δ(φ) and H(φ) are the
Dirac and Heaviside functions, respectively. I = I(x, y) is the image intensity
at (x, y) ∈ Ω,Ω ⊂ R2. The term weighted by γ penalizes the pair-wise overlaps
between distinct contours. The last term is the volume (or area in 2D) conser-
vation constraint (VCC) introduced in [1] by Dufour which helps to improve
the segmentation of touching cells. V 0

i =
∫∫
Ω
H(φ0i )dxdy is the volume of cell i

segmented from the first frame. When cells of similar intensity levels touch, the
image dependent terms (the first three terms) are insufficient to determine the
boundary between cells correctly. Without the VCC, the active contour evolution
will depend primarily on the initialization and result in one contour engulfing
the other contour.
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From Eq. (1), for each φi, one can derive a time t indexed surface evaluation
equation as follows:

∂φi
∂t

=

[
α∇ · ∇φi

|∇φi|
− λI(I − cI,i)2 + λO

∏
j 6=i

(1−H(φj)) (I − cO)2

− γ
∑
j 6=i

H(φj)− ηi
(∫∫

Ω

H(φi)dxdy − V 0
i

)]
δ(φi) (2)

where

cI,i(t) = 〈H(φi)〉 ; cO(t) =

〈∏
j

(1−H(φi))

〉
(3)

A shortcoming of Dufour’s VCC is that the resultant shrinking or expanding
force applies not only on the portion of cell boundary where the cell touches or
resides inside another cell, but also on the whole boundary of a cell. Therefore,
undesirable shrinkage or expansion may be caused on the whole cell boundary.
For isolated cells, the image dependent terms—the second and third terms on
the right side of Eq. (1), are sufficient for correct segmentation. Cells and nuclei
change their shapes dramatically during cell division. When tracking cell mitosis
events applying Dufour’s approach, one may obtain inaccurate results due to
such effects of the VCC term.

2.2 Four-coupled level sets

To reduce computational costs for segmenting of N objects, a four-color level
set (4LS) algorithm based on graph vertex coloring was presented in [16]. The
authors use the Delaunay graph to capture spatial relationship of cells, with each
vertex of the graph representing a cell. By applying a vertex coloring processing
on the graph, each vertex is tagged with a color which is different from those of
its adjacent vertices in the graph. Therefore, cells can be divided into groups,
according to the colors assigned to them. Since cells in the same group/color are
not adjacent spatially, one can assign a single level set function to handle the
processing of all cells with the same color tag. The famous “four-color theorem”
states that any planar graphs can be colored with at most four colors and no two
neighboring vertices are assigned with the same color [18]. Hence, one requires
only four level set functions and six coupling constraint terms for the processing
of N cells. This dramatically reduces the computational cost.

The four evolution equations are as follows (i = 1, 2, 3, 4):

∂φi
∂t

=

[
α∇ · ∇φi

|∇φi|
− λI(I − cI,i)2 + λO

4∏
j=1,j 6=i

(1−H(φj)) (I − cO)2

− γ
4∑

j=i+1

H(φj)

]
δ(φi) + ζ

[
∆φi −∇ ·

∇φi
|∇φi|

]
(4)
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where the last term enforces the constraint of |∇φi| = 1.

In addition to the pair-wise coupling constraint weighted by γ in Eq. (4),
they also used an explicit coupling rule during the narrow-band evolution to
penalize overlaps between level sets: a pixel on the front of a current level sets
(δ(φi) > sthresh) is updated only if its saliency is highest among all four level
sets, i.e. δ(φi) > δ(φj), for given i and for all j 6= i.

3 Methodology

This section describes in detail our segmentation/clump separating method and
three-color coupled level set (3LS) algorithm for cell tracking.

The main steps of the proposed segmentation and tracking algorithm are
summarized as follows:

1) Segment the first frame of the sequence using Chan and Vese’s two-phase
level set algorithm [17].

2) Determine the cell number and positions by extracting concave points and
performing ellipse fitting after initial segmentation. Produce a label map
where each cell is represented by a unique label.

3) Use the label map to initialize three level set functions based on vertex
coloring result.

4) Update cI,i and cO and evolve each level set function according to Eq. (11)
until convergence.

5) Determine whether there are new objects entering the current frame by
applying two-phase level set algorithm.

6) If there is a next frame, obtain a label map from the converged level set
functions and go to step 3. Otherwise stop the algorithm.

We elaborate essential components of the algorithm as follows.

3.1 Concave Point Extraction and Ellipse Fitting

In level set based tracking methods, a good segmentation of the first frame is
very important to perform correct tracking as it provides the information about
the positions and the number of objects to be tracked [15]. At the beginning of
our method, the first frame is binarized by Chan and Vese’s approach [17] of
active contours without edges in the level-set framework. Such initial segmen-
tation tends to group close/touching cells together. Next, we use the derived
concave points and ellipse fitting to separate clumped cells. Our concave point
extraction and ellipse fitting method uses three parameters (d, hmin, and fth),
comparing to Bai’s popular method using seven parameters [19]. Let B be the
binary image obtained. The output exterior boundaries of B are used to extract
concave points. Let pc(xc, yc) be the point at order index c, c = 1, 2, ..., N in a
sequence of ordered points on a close boundary. θ(pc), the degree of concavity of
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pc is measured by the angle between the two vectors defined by three consecutive
points (pc−1, pc, pc+1):

θ(pc) =

{
a(pc−1, pc)− a(pc+1, pc), if a(pc−1, pc)− a(pc+1, pc) > 0
a(pc−1, pc)− a(pc+1, pc) + 2π, else

(5)

where

a(pc−1, pc) = arctan(yc−1 − yc, xc−1 − xc) (6)

a(pc+1, pc) = arctan(yc+1 − yc, xc+1 − xc) (7)

The concave points are the local maxima of θ(pc), c = 1, 2, ..., N , with mini-
mum peak separation distance of d and minimum peak height of hmin.

pconcave = {pc∗ |θ(pc∗) ≥ θ(pc) ∀ |c − c∗| ≤ d and θ(pc∗) ≥ hmin} (8)

where d is minimum peak separation distance and hmin are the minimum peak
height. d and hmin are pre-set thresholds. In the next step, the exterior bound-
aries are separated into contour segments by concave points. Note that if initial
segmentation generates interior boundaries, convex points can be extracted by
finding local minima of θ(pc) in a similar way, then the interior boundaries can be
separated into contour segments by convex points, which are crucial to separate
a highly compact clump of cells.

The contour segments are fitted to ellipses using the least squares criterion.
We define a score measuring the fitness between contour segment(s) L and its
fitted ellipse E(L) as follows

fit(L, E) =
length(L)

π
√

2(a2 + b2)

(
area(E ∩ B)

πab

)3

(9)

where a and b are the semi-major and semi-minor axes of E , respectively. The
first fraction on the right side is the ratio between the length of L and the (ap-
proximated) perimeter of E . In case L consists of multiple contour segments, its
length is the sum of those of all segments. The second fraction (in the bracket
with cubic power) is the ratio of the area of the region enclosed by both B and E
over the area of E . For each connected component in B, each single contour seg-
ment is fitted by an ellipse. If the fitness score is higher than a threshold fth, then
the segment matches the ellipse and such an ellipse is kept. Those unmatched
segments are paired with each other to find the best fitted ellipse among all com-
binations, requiring fit > fth. Let Li, i = 1, 2, ...,M be the unmatched segments
from the same connected components. The procedure of segment combination is
given in Algorithm 1. Fig. 1 illustrates the extracted concave points and ellipses
fitted.

3.2 Graph Construction and Vertex Coloring

Instead of assigning a unique level set to every cell as [11] and [1], we aim to use
a minimum number of level sets for the segmentation and tracking of the same
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(a) (b) (c)

Fig. 1. (a) Original image with multiple touching cells. (b) Binary image and concave
points. (c) Fitted ellipses: red ellipses are fitted to a single contour segment and blue
ellipses are fitted to a pair of segments.

for i = 1 to M do
for j = i+ 1 to M do

Lij = Li ∪ Lj ;
Fit an ellipse Eij by using all the points on Lij ;
F (i, j) = fit(Lij , Eij);

end

end
(i∗, j∗) = arg maxi,j∈{1,2,...,M} F (i, j);
fmax = F (i∗, j∗);
while fmax > fth do

Keep Ei∗j∗ ;
F (i∗, j) = 0, for j = 1 to M ;
F (i, j∗) = 0, for i = 1 to M ;
(i∗, j∗) = arg maxi,j∈{1,2,...,M} F (i, j);
fmax = F (i∗, j∗);

end

Algorithm 1: Segment combination for ellipse fitting

number of cells. This problem can be solved by vertex coloring, a way of coloring
the vertices of a graph such that no two adjacent vertices share the same color.

We construct a graph from the fitted ellipses as follows:

1) Generate a planar graph by applying Delaunay triangulation on the centroids
of all ellipses/cells.

2) If the length of an edge derived from the triangulation is larger than a pre-set
threshold de, the edge is removed from the graph.

3) Add a vertex which represents the background and add an un-directed edge
between the background vertex and every other cell vertexes (it is reasonable
to assume that every cell is touching with the background).

After the graph is built, we apply Brèlaz’s DSATUR algorithm [20] to assign
a color tag to each vertex so that no adjacent vertices are assigned with the
same color tag. The background vertex in the graph we constructed is adjacent
to every cell vertices; it will be assigned a color which is different from all cell
vertices. By initializing one level set function with the ellipses tagged with the
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same color, we need only three level set functions to represent the cells in our
2D segmentation and tracking problem.

If touching cells form a circle, the background inside the circle is assigned
with another vertex and edges will be added between this vertex and the vertices
of surrounding cells. Hence this vertex will be assigned with a color different
from vertices of surrounding cells (but likely to be the same colors as other
backgrounds).

Note that two vertexes might be adjacent in the graph even though their
corresponding ellipses are not touching or overlapping. Two ellipses will be as-
signed to different colors if their distance is below a parameter de. This is to
prevent them from merging in the subsequent frames. Here we assume each in-
dividual cell will overlap respectively in any two consecutive image frames. We
empirically set de to be 1.2 times the sum of the long axes of two ellipses.

The above method for graph construction and vertex coloring can be easily
extended to the representation of cell relationship for the task of 3D cell seg-
mentation. In this case, the vertices have three coordinate elements and edges
are positioned in a 3D (X,Y, Z) space instead of a 2D space. Therefore, the De-
launay triangulation and the edge length measurement need to be done in the
3D space. An example of such a graph is displayed in Fig. 2.

Fig. 2. A graph representing 3D cell relationship with vertices (in dots) and edges (in
solid lines).

3.3 Three-color Coupled Level Sets

Our three-color coupled level sets algorithm is implemented in the nLS [1] frame-
work to handle overlapped cells. To avoid the shrinkage or expansion on whole
cell boundary caused by its VCC term, we propose an improved VCC which
combines with a pair-wise coupling term. Our energy functional is defined with
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three level set functions:

E(φ1, φ2, φ3, cO, cI,1, cI,2, cI,3) =

∫∫
Ω

3∑
i=1

[
αδ(φi)|∇φi|+ λIH(φi)(I − cI,i)2

+
λO
3

3∏
j=1

(1−H(φj)) (I − cO)2 + γ

3∑
j=i+1

H(φi)H(φj)

+
1

2
ηi

Ni∑
q=1

((∫∫
Ω

H(φi,q)dxdy − V 0
i,q

)2 3∑
j=1,j 6=i

H(φi,q)H(φj)

)]
dxdy (10)

where Ni is the number of cells represented by φi, i = 1, 2, 3 and φi,q is the
level set function computed from the qth individual cell in φi, q = 1, 2, ..., Ni.
Ni is determined in the vertex coloring procedure described in Section 3.2. As
a result, the penalty of VCC (the term weighted by ηi in Eq. (10) only applies
to the part of cell boundary which touches or locates inside another cell. This
VCC term disappears automatically on isolated cells which do not overlap with
other cells. Three evolution equations (i = 1, 2, 3) can be derived by applying
Euler-Lagrange equations to Eq. (10):

∂φi
∂t

=

[
α∇ · ∇φi

|∇φi|
− λI(I − cI,i)2 + λO

3∏
j=1,j 6=i

(1−H(φj)) (I − cO)2

−γ
3∑

j=i+1

H(φj)

]
δ(φi)−ηi

Ni∑
q=1

[(∫∫
Ω

H(φi,q)dxdy − V 0
i,q

) 3∑
j=1,j 6=i

H(φi,q)H(φj)

+
1

2

(∫∫
Ω

H(φi,q)dxdy − V 0
i,q

)2 3∑
j=1,j 6=i

H(φj)

]
δ(φi,q) (11)

In Fig. 3, we illustrate the tracking results on two consecutive frames by
coupled level sets. At T0, only two level set functions are required for the seg-
mentation due to the small cell number. At T1, the coupled level sets without
VCC fail to track the correct boundaries because of the lack of intensity differ-
ence between cells. Dufour’s method causes the whole cell boundary to shrink
(purple cell) or expand (blue cell) (Fig. 3(c)). Our method, which uses an im-
proved VCC term, generates satisfactory result (Fig. 3(e)).

3.4 Tracking Scheme

Now we describe our tracking scheme used in this work. In the first frame
of a temporal sequence, the cell number and positions are determined by ex-
tracting concave points and ellipse fitting after initial segmentation. Then, the
cells/ellipses are used to initialize three level set functions based on the result
of vertex coloring. Three-color coupled level sets without VCC is applied to seg-
ment the cell boundary. To process frames in subsequent times, the evolution
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(a) (b) (c) (d) (e)

Fig. 3. Tracking results of coupled level sets. Contours of different color are represented
by different level set functions. (a) Without VCC at T0. (b) Without VCC at T1. (c)
Using Dufour’s VCC at T1. (d) Using Nath’s explicit coupling rule without VCC at
T1. (e) Using our improved VCC at T1.

result of Eq. (11) on the current frame is used to initialize the level set functions
in the following frame. After each iteration, the distance between cells needs to
be re-calculated. Cells within the distance threshold de need to change to differ-
ent colors (and to re-initialize the level sets) to prevent the merge of cells of the
same color.

4 Experiments

4.1 Validation datasets

Our proposed method was tested on four publically available datasets. They are
real time-lapse fluorescent microscopic image sequences, three in 2D (Hela1 [21],
N2DL-Hela [22], and C2DL-MSC [22]) and one in 3D (C3DL-MDA231 [22]). The
imaging acquisition setup of each dataset is listed in Table 1 [23]. Commonly
used in cell population studies, the Hela1 and N2DL-Hela datasets are nuclear-
stained (only nuclei are seen in the images). The two Hela datasets have high cell
density and low resolution, some with very low fluorescent densities. Moreover,
colliding, mitosis, entering and leaving cells are frequently present. The other
two datasets, C2DL-MSC and C3DL-MDA231, are cytoplasm-stained. They are
more appropriate for studies of single-cell morphology changes. The challenges
in analyzing the C2DL-MSC dataset are the low signal-to-noise ratio and the
presence of filament-like protrusions which often collide with each other. It is
most difficult to process images in the 3D C3DL-MDA231 dataset: in addition
to the colliding elongated cells, the data were acquired under high-throughput
conditions (i.e., very low resolution in axial direction (difficult for segmentation)
and very large time step (difficult for tracking)).

4.2 Evaluation metrics

During ellipse fitting, the parameters were fixed: d = 5, hmin = 3.9, and fth =
0.5. During evolution of the coupled level sets, the parameters were fixed to: α
= 65, λI = 0.5, λO = 1, γ = 0, η = 2, and the number of iterations for each
frame is 50.
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Table 1. Acquisition parameters and properties of the datasets.

Dataset Hela1 N2DL-Hela C2DL-MSC C3DL-MDA231

Objective Plan 10x/0.4 Plan-Neofluar 10x/0.3 Plan 20x/0.7

Frame size 672×512 1100×700 992×832 512×512×30

Pixel size (µm) 0.645×0.645 0.3×0.3 1.242×1.242×6

Time step 15 min 30 min 20 min 80 min

No. of frames 25 30 48 12

No. of moves 1444 760 413 331

No. of divisions 15 29 0 0

The segmentation results of the proposed three-color coupled level sets (3LS)
were compared against the ground truth which is the consensus of three hu-
man experts, in terms of precision, recall, and F-score. Following the evaluation
method in [23], a reference cell in ground truth and a segmented one are con-
sidered matching if their overlapping area is more than 50% of the total area
of the reference cell. Therefore, for each reference cell, there can be one match-
ing segmented cell at most. In case there is no segmented cell matching with
the reference cell, the three segmentation accuracy indices are set to zero. The
segmentation accuracy is calculated as the mean of all the reference cells in the
sequence, including these zeros. The percentage of matched reference cells is also
computed. When we vary d ∈ [1, 32], hmin ∈ [3.6, 4.2], fth ∈ [0.4, 0.7], the preci-
sion, recall, and F-score of the first frame of Hela1 are 0.972 ± 0.006, 0.914 ±
0.008, and 0.921 ± 0.006 respectively. The result shows that the segmentation
accuracy is not sensitive to the parameters. The tracking accuracy was measured
by the successful detection rate in move events and division events. A move event
refers to one cell moving from one frame to the next (no division happens) or
newly appears in a frame.

4.3 Numerical results

We choose to compare the performance of our algorithm with the n-coupled level
sets (nLS) [1,11], the four-coupled level sets (4LS) [16], and a publicly available
software: DCellIQ [21] based on [24] and [25], which adopts a “detection and
then linking” strategy. We use our segmentation result from the first frame to
initialize the n level set functions in nLS and the four level set functions in 4LS.
Examples of segmentation results are shown in Fig. 4 and Fig. 5.

The quantitative evaluation results are shown in Tables 2-5. 3LS’s segmen-
tation accuracy and tracking accuracy are notably higher than those of DCellIQ
and nLS in all four datasets. For the Hela1 dataset, all method perform well in
finding matched reference cells (‘match’ in Table 2) and achieve high recall of
segmentation. DCellIQ and nLS perform poorer in the segmentation precision
than 4LS and 3LS. 3LS is significantly better than DCellIQ, nLS and 4LS in
tracking of cells in divisions. For the N2DL-Hela dataset, all accuracy measures



12 Authors Suppressed Due to Excessive Length

T = 4

(a)

T = 4

(b)

T = 4

(c)

T = 4

(d)

Fig. 4. Segmentation results on Hela1 dataset from (a) DCellIQ, (b) nLS, (c) 4LS, and
(d) 3LS.

(a) (b)

T = 3

(c) (d)

Fig. 5. Segmentation results on C2DL-MSC dataset from (a) DCellIQ, (b) nLS, (c)
4LS, and (d) 3LS.
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are lower (Table 3), due to the fact that this sequence contains more nuclei of
low intensity which are difficult for these two-phase level set based methods to
detect. 3LS shows slight improvement of accuracy over 4LS on the two Hela
datasets.

For the C2DL-MSC dataset, 3LS outperforms 4LS by around 15% in both
segmentation accuracy and tracking accuracy (Table 4). As a narrow-band ap-
proach, 4LS may be difficult to track drastically changed cell shapes across
frames. Besides, its explicit topological coupling constraint can prevent false
merging or absorption of neighboring cells; However, it lacks of a VCC term
to handle touching cells smartly by making use of the area/volume information
from the previous frame. For the C3DL-MDA231 dataset, a roughly 20% increase
in segmentation accuracy is achieved by 3LS (Table 5). Overall, 3LS is the most
accurate method among the four methods under test.

Table 2. Segmentation and tracking accuracy on Hela1 dataset.

Segmentation Tracking

Method precision recall F-score match move division

DCellIQ 0.727 ± 0.158 0.967 ± 0.167 0.825 ± 0.158 97.3 % 83.9 % 46.7 %

nLS 0.769 ± 0.200 0.947 ± 0.179 0.838 ± 0.183 97.0 % 94.9 % 33.3 %

4LS 0.857 ± 0.186 0.932 ± 0.162 0.885 ± 0.166 97.8 % 92.7 % 46.7 %

3LS 0.840 ± 0.165 0.951 ± 0.162 0.887 ± 0.156 97.5 % 96.9 % 73.3 %

Table 3. Segmentation and tracking accuracy on N2DL-Hela dataset.

Segmentation Tracking

Method precision recall F-score match move division

DCellIQ 0.514 ± 0.362 0.596 ± 0.408 0.543 ± 0.373 70.0 % 64.1 % 75.9 %

nLS 0.613 ± 0.403 0.682 ± 0.415 0.635 ± 0.399 74.2 % 76.1 % 34.5 %

4LS 0.718 ± 0.419 0.664 ± 0.387 0.684 ± 0.394 75.8 % 77.0 % 79.3 %

3LS 0.705 ± 0.393 0.710 ± 0.399 0.700 ± 0.387 74.2 % 78.0 % 79.3 %

The computational time per iteration of nLS and 3LS are compared in Table
6. Without VCC, i.e., the ηi term in Eq. (1) and Eq. (10), the 3LS’s computa-
tional time is only 3% of the nLS’s in the 2D image and 8% in the 3D image.
With the VCC term, the 3LS’s computational time is 5% of nLS’s in 2D and 17%
in 3D. This is because 3LS reduces the number of coupling terms from O(N2)
to O(1) for N objects. Comparing with the 4LS, the computational time of 3LS
without VCC has also been reduced by 30%.
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Table 4. Segmentation and tracking accuracy on C2DL-MSC dataset.

Segmentation Tracking

Method precision recall F-score match move division

DCellIQ 0.646 ± 0.415 0.430 ± 0.313 0.505 ± 0.341 65.2 % 60.1 % -

nLS 0.589 ± 0.444 0.436 ± 0.347 0.493 ± 0.377 64.3 % 73.9 % -

4LS 0.584 ± 0.411 0.476 ± 0.343 0.513 ± 0.358 68.8 % 79.2 % -

3LS 0.754 ± 0.340 0.604 ± 0.289 0.663 ± 0.301 83.9 % 95.6 % -

Table 5. Segmentation and tracking accuracy on C3DL-MDA231 dataset.

Segmentation Tracking

Method precision recall F-score match move division

nLS 0.428 ± 0.354 0.572 ± 0.401 0.460 ± 0.342 70.0 % 86.1 % -

4LS 0.570 ± 0.434 0.524 ± 0.380 0.528 ± 0.387 67.5 % 89.1 % -

3LS 0.685 ± 0.283 0.782 ± 0.289 0.714 ± 0.267 90.0 % 91.8 % -

5 Conclusions

In this paper, a new algorithm for cell segmentation and tracking is proposed
based on the coupled active contour framework. Two new solutions were pre-
sented to address the shortcomings of the original relevant algorithms. Specifi-
cally, we use only three level set functions to segment and track arbitrary number
of cells in the image sequences, taking advantage of a vertex coloring approach
in image graph representations. Also, we redefine the volume conservation con-
straint in the optimization functional. This is to reduce the undesirable shrink-
age or expansion caused on the whole cell boundary. In addition, we develop
an algorithm for touching cell separation in image segmentation, based on con-
cave points and ellipse fitting. Experimental results show improved segmentation
performance of our new algorithm, as well as tracking performance in terms of
successful detection rates in move events and division events. Finally, the com-
putational time of the new algorithm is notably reduced compared with the
original n-coupled level set algorithm.

Table 6. Computational time (sec) per iteration.

2D (Hela1, 72 cells) 3D (C3DL-MDA231, 31 cells)

Method w/o VCC with VCC w/o VCC with VCC

nLS 13.1 13.4 152 154

4LS 0.51 - 17.2 -

3LS 0.36 0.68 12.1 26.5
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ing, E., Kozubek, M., Ortiz-de Solorzano, C.: A benchmark for comparison of cell
tracking algorithms. Bioinformatics 30 (2014) 1609–1617

24. Li, F., Zhou, X., Zhu, J., Ma, J., Huang, X., Wong, S.T.: High content image anal-
ysis for human h4 neuroglioma cells exposed to cuo nanoparticles. BMC Biotech-
nology 7 (2007)

25. Wang, M., Zhou, X., Li, F., Huckins, J., King, R.W., Wong, S.T.C.: Novel cell
segmentation and online svm for cell cycle phase identification in automated mi-
croscopy. Bioinformatics 24 (2008) 94–101


